22 research outputs found

    Dynamic Joint Scheduling of Anycast Transmission and Modulation in Hybrid Unicast-Multicast SWIPT-Based IoT Sensor Networks

    Full text link
    The separate receiver architecture with a time- or power-splitting mode, widely used for simultaneous wireless information and power transfer (SWIPT), has a major drawback: Energy-intensive local oscillators and mixers need to be installed in the information decoding (ID) component to downconvert radio frequency (RF) signals to baseband signals, resulting in high energy consumption. As a solution to this challenge, an integrated receiver (IR) architecture has been proposed, and, in turn, various SWIPT modulation schemes compatible with the IR architecture have been developed. However, to the best of our knowledge, no research has been conducted on modulation scheduling in SWIPT-based IoT sensor networks while taking into account the IR architecture. Accordingly, in this paper, we address this research gap by studying the problem of joint scheduling for unicast/multicast, IoT sensor, and modulation (UMSM) in a time-slotted SWIPT-based IoT sensor network system. To this end, we leverage mathematical modeling and optimization techniques, such as the Lagrangian duality and stochastic optimization theory, to develop an UMSM scheduling algorithm that maximizes the weighted sum of average unicast service throughput and harvested energy of IoT sensors, while ensuring the minimum average throughput of both multicast and unicast, as well as the minimum average harvested energy of IoT sensors. Finally, we demonstrate through extensive simulations that our UMSM scheduling algorithm achieves superior energy harvesting (EH) and throughput performance while ensuring the satisfaction of specified constraints well.Comment: 29 pages, 13 figures (eps

    DeepSoCS: A Neural Scheduler for Heterogeneous System-on-Chip (SoC) Resource Scheduling

    Full text link
    In this paper, we~present a novel scheduling solution for a class of System-on-Chip (SoC) systems where heterogeneous chip resources (DSP, FPGA, GPU, etc.) must be efficiently scheduled for continuously arriving hierarchical jobs with their tasks represented by a directed acyclic graph. Traditionally, heuristic algorithms have been widely used for many resource scheduling domains, and Heterogeneous Earliest Finish Time (HEFT) has been a dominating state-of-the-art technique across a broad range of heterogeneous resource scheduling domains over many years. Despite their long-standing popularity, HEFT-like algorithms are known to be vulnerable to a small amount of noise added to the environment. Our Deep Reinforcement Learning (DRL)-based SoC Scheduler (DeepSoCS), capable of learning the "best" task ordering under dynamic environment changes, overcomes the brittleness of rule-based schedulers such as HEFT with significantly higher performance across different types of jobs. We~describe a DeepSoCS design process using a real-time heterogeneous SoC scheduling emulator, discuss major challenges, and present two novel neural network design features that lead to outperforming HEFT: (i) hierarchical job- and task-graph embedding; and (ii) efficient use of real-time task information in the state space. Furthermore, we~introduce effective techniques to address two fundamental challenges present in our environment: delayed consequences and joint actions. Through an extensive simulation study, we~show that our DeepSoCS exhibits the significantly higher performance of job execution time than that of HEFT with a higher level of robustness under realistic noise conditions. We~conclude with a discussion of the potential improvements for our DeepSoCS neural scheduler.Comment: 18 pages, Accepted by Electronics 202

    Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation of rPPG

    Full text link
    Remote Photoplethysmography (rPPG) is a technology that utilizes the light absorption properties of hemoglobin, captured via camera, to analyze and measure blood volume pulse (BVP). By analyzing the measured BVP, various physiological signals such as heart rate, stress levels, and blood pressure can be derived, enabling applications such as the early prediction of cardiovascular diseases. rPPG is a rapidly evolving field as it allows the measurement of vital signals using camera-equipped devices without the need for additional devices such as blood pressure monitors or pulse oximeters, and without the assistance of medical experts. Despite extensive efforts and advances in this field, serious challenges remain, including issues related to skin color, camera characteristics, ambient lighting, and other sources of noise, which degrade performance accuracy. We argue that fair and evaluable benchmarking is urgently required to overcome these challenges and make any meaningful progress from both academic and commercial perspectives. In most existing work, models are trained, tested, and validated only on limited datasets. Worse still, some studies lack available code or reproducibility, making it difficult to fairly evaluate and compare performance. Therefore, the purpose of this study is to provide a benchmarking framework to evaluate various rPPG techniques across a wide range of datasets for fair evaluation and comparison, including both conventional non-deep neural network (non-DNN) and deep neural network (DNN) methods. GitHub URL: https://github.com/remotebiosensing/rppg.Comment: 19 pages, 10 figure

    A Possible Mechanism Underlying the Effectiveness of Acupuncture in the Treatment of Drug Addiction

    Get PDF
    Clinical trials are currently underway to determine the effectiveness of acupuncture in the treatment of drug addiction. While there are still many unanswered questions about the basic mechanisms of acupuncture, some evidence exists to suggest that acupuncture can play an important role in reducing reinforcing effects of abused drugs. The purpose of this article is to critically review these data. The neurochemical and behavioral evidence showed that acupuncture's role in suppressing the reinforcing effects of abused drugs takes place by modulating mesolimbic dopamine neurons. Also, several brain neurotransmitter systems such as serotonin, opioid and amino acids including GABA have been implicated in the modulation of dopamine release by acupuncture. These results provided clear evidence for the biological effects of acupuncture that ultimately may help us to understand how acupuncture can be used to treat abused drugs. Additional research using animal models is of primary importance to understanding the basic mechanism underlying acupuncture's effectiveness in the treatment of drug addiction

    Readily Design and Try-On Garments by Manipulating Segmentation Images

    No full text
    Recently, fashion industries have introduced artificial intelligence to provide new services, and research to combine fashion design and artificial intelligence has been continuously conducted. Among them, generative adversarial networks that synthesize realistic-looking images have been widely applied in the fashion industry. In this paper, a new apparel image is created using a generative model that can apply a new style to a desired area in a segmented image. It also creates a new fashion image by manipulating the segmentation image. Thus, interactive fashion image manipulation, which enables users to edit images by controlling segmentation images, is possible. This allows people to try new styles without the pain of inconvenient travel or changing clothes. Furthermore, they can easily determine which color and pattern suits the clothes they wear more, or whether the clothes other people wear match their clothes. Therefore, user-centered fashion design is possible. It is useful for virtually trying on or recommending clothes

    Data Augmentation for Human Keypoint Estimation Deep Learning based Sign Language Translation

    No full text
    Deep learning technology has developed constantly and is applied in many fields. In order to correctly apply deep learning techniques, sufficient learning must be preceded. Various conditions are necessary for sufficient learning. One of the most important conditions is training data. Collecting sufficient training data is fundamental, because if the training data are insufficient, deep learning will not be done properly. Many types of training data are collected, but not all of them. So, we may have to collect them directly. Collecting takes a lot of time and hard work. To reduce this effort, the data augmentation method is used to increase the training data. Data augmentation has some common methods, but often requires different methods for specific data. For example, in order to recognize sign language, video data processed with openpose are used. In this paper, we propose a new data augmentation method for sign language data used for learning translation, and we expect to improve the learning performance, according to the proposed method

    Dataset Transformation System for Sign Language Recognition Based on Image Classification Network

    No full text
    Among the various fields where deep learning is used, there are challenges to be solved in motion recognition. One is that it is difficult to manage because of the vast amount of data. Another is that it takes a long time to learn due to the complex network and the large amount of data. To solve the problems, we propose a dataset transformation system. Sign language recognition was implemented to evaluate the performance of this system. The system consists of three steps: pose estimation, normalization, and spatial–temporal map (STmap) generation. STmap is a method of simultaneously expressing temporal data and spatial data in one image. In addition, the accuracy of the model was improved, and the error sensitivity was lowered through the data augmentation process. Through the proposed method, it was possible to reduce the dataset from 94.39 GB to 954 MB. It corresponds to approximately 1% of the original. When the dataset created through the proposed method is trained on the image classification model, the sign language recognition accuracy is 84.5%

    Assessment of ROI Selection for Facial Video-Based rPPG

    No full text
    In general, facial image-based remote photoplethysmography (rPPG) methods use color-based and patch-based region-of-interest (ROI) selection methods to estimate the blood volume pulse (BVP) and beats per minute (BPM). Anatomically, the thickness of the skin is not uniform in all areas of the face, so the same diffuse reflection information cannot be obtained in each area. In recent years, various studies have presented experimental results for their ROIs but did not provide a valid rationale for the proposed regions. In this paper, to see the effect of skin thickness on the accuracy of the rPPG algorithm, we conducted an experiment on 39 anatomically divided facial regions. Experiments were performed with seven algorithms (CHROM, GREEN, ICA, PBV, POS, SSR, and LGI) using the UBFC-rPPG and LGI-PPGI datasets considering 29 selected regions and two adjusted regions out of 39 anatomically classified regions. We proposed a BVP similarity evaluation metric to find a region with high accuracy. We conducted additional experiments on the TOP-5 regions and BOT-5 regions and presented the validity of the proposed ROIs. The TOP-5 regions showed relatively high accuracy compared to the previous algorithm’s ROI, suggesting that the anatomical characteristics of the ROI should be considered when developing a facial image-based rPPG algorithm
    corecore